3.544 \(\int \frac{x^2 (c+d x+e x^2+f x^3)}{(a+b x^4)^{3/2}} \, dx\)

Optimal. Leaf size=333 \[ -\frac{\left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (\sqrt{b} c-\sqrt{a} e\right ) \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac{1}{2}\right )}{4 a^{3/4} b^{5/4} \sqrt{a+b x^4}}+\frac{c \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 a^{3/4} b^{3/4} \sqrt{a+b x^4}}+\frac{f \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )}{2 b^{3/2}}-\frac{x \left (a e+a f x-b c x^2-b d x^3\right )}{2 a b \sqrt{a+b x^4}}-\frac{c x \sqrt{a+b x^4}}{2 a \sqrt{b} \left (\sqrt{a}+\sqrt{b} x^2\right )}-\frac{d \sqrt{a+b x^4}}{2 a b} \]

[Out]

-(x*(a*e + a*f*x - b*c*x^2 - b*d*x^3))/(2*a*b*Sqrt[a + b*x^4]) - (d*Sqrt[a + b*x^4])/(2*a*b) - (c*x*Sqrt[a + b
*x^4])/(2*a*Sqrt[b]*(Sqrt[a] + Sqrt[b]*x^2)) + (f*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/(2*b^(3/2)) + (c*(Sq
rt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2]
)/(2*a^(3/4)*b^(3/4)*Sqrt[a + b*x^4]) - ((Sqrt[b]*c - Sqrt[a]*e)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqr
t[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(4*a^(3/4)*b^(5/4)*Sqrt[a + b*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.250941, antiderivative size = 333, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 9, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.3, Rules used = {1828, 1885, 1198, 220, 1196, 1248, 641, 217, 206} \[ -\frac{\left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (\sqrt{b} c-\sqrt{a} e\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{4 a^{3/4} b^{5/4} \sqrt{a+b x^4}}+\frac{c \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 a^{3/4} b^{3/4} \sqrt{a+b x^4}}+\frac{f \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )}{2 b^{3/2}}-\frac{x \left (a e+a f x-b c x^2-b d x^3\right )}{2 a b \sqrt{a+b x^4}}-\frac{c x \sqrt{a+b x^4}}{2 a \sqrt{b} \left (\sqrt{a}+\sqrt{b} x^2\right )}-\frac{d \sqrt{a+b x^4}}{2 a b} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*(c + d*x + e*x^2 + f*x^3))/(a + b*x^4)^(3/2),x]

[Out]

-(x*(a*e + a*f*x - b*c*x^2 - b*d*x^3))/(2*a*b*Sqrt[a + b*x^4]) - (d*Sqrt[a + b*x^4])/(2*a*b) - (c*x*Sqrt[a + b
*x^4])/(2*a*Sqrt[b]*(Sqrt[a] + Sqrt[b]*x^2)) + (f*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/(2*b^(3/2)) + (c*(Sq
rt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2]
)/(2*a^(3/4)*b^(3/4)*Sqrt[a + b*x^4]) - ((Sqrt[b]*c - Sqrt[a]*e)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqr
t[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(4*a^(3/4)*b^(5/4)*Sqrt[a + b*x^4])

Rule 1828

Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> With[{q = m + Expon[Pq, x]}, Module[{Q = Pol
ynomialQuotient[b^(Floor[(q - 1)/n] + 1)*x^m*Pq, a + b*x^n, x], R = PolynomialRemainder[b^(Floor[(q - 1)/n] +
1)*x^m*Pq, a + b*x^n, x]}, Dist[1/(a*n*(p + 1)*b^(Floor[(q - 1)/n] + 1)), Int[(a + b*x^n)^(p + 1)*ExpandToSum[
a*n*(p + 1)*Q + n*(p + 1)*R + D[x*R, x], x], x], x] - Simp[(x*R*(a + b*x^n)^(p + 1))/(a*n*(p + 1)*b^(Floor[(q
- 1)/n] + 1)), x]] /; GeQ[q, n]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ[n, 0] && LtQ[p, -1] && IGtQ[m, 0]

Rule 1885

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], j, k}, Int[Sum[x^j*Sum[Coeff[P
q, x, j + (k*n)/2]*x^((k*n)/2), {k, 0, (2*(q - j))/n + 1}]*(a + b*x^n)^p, {j, 0, n/2 - 1}], x]] /; FreeQ[{a, b
, p}, x] && PolyQ[Pq, x] && IGtQ[n/2, 0] &&  !PolyQ[Pq, x^(n/2)]

Rule 1198

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(e + d*q)/q, Int
[1/Sqrt[a + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a
, c, d, e}, x] && PosQ[c/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 1248

Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(d + e*x)^q
*(a + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, c, d, e, p, q}, x]

Rule 641

Int[((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(e*(a + c*x^2)^(p + 1))/(2*c*(p + 1)),
x] + Dist[d, Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, p}, x] && NeQ[p, -1]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^2 \left (c+d x+e x^2+f x^3\right )}{\left (a+b x^4\right )^{3/2}} \, dx &=-\frac{x \left (a e+a f x-b c x^2-b d x^3\right )}{2 a b \sqrt{a+b x^4}}-\frac{\int \frac{-a b e-2 a b f x+b^2 c x^2+2 b^2 d x^3}{\sqrt{a+b x^4}} \, dx}{2 a b^2}\\ &=-\frac{x \left (a e+a f x-b c x^2-b d x^3\right )}{2 a b \sqrt{a+b x^4}}-\frac{\int \left (\frac{-a b e+b^2 c x^2}{\sqrt{a+b x^4}}+\frac{x \left (-2 a b f+2 b^2 d x^2\right )}{\sqrt{a+b x^4}}\right ) \, dx}{2 a b^2}\\ &=-\frac{x \left (a e+a f x-b c x^2-b d x^3\right )}{2 a b \sqrt{a+b x^4}}-\frac{\int \frac{-a b e+b^2 c x^2}{\sqrt{a+b x^4}} \, dx}{2 a b^2}-\frac{\int \frac{x \left (-2 a b f+2 b^2 d x^2\right )}{\sqrt{a+b x^4}} \, dx}{2 a b^2}\\ &=-\frac{x \left (a e+a f x-b c x^2-b d x^3\right )}{2 a b \sqrt{a+b x^4}}-\frac{\operatorname{Subst}\left (\int \frac{-2 a b f+2 b^2 d x}{\sqrt{a+b x^2}} \, dx,x,x^2\right )}{4 a b^2}+\frac{c \int \frac{1-\frac{\sqrt{b} x^2}{\sqrt{a}}}{\sqrt{a+b x^4}} \, dx}{2 \sqrt{a} \sqrt{b}}-\frac{\left (\frac{\sqrt{b} c}{\sqrt{a}}-e\right ) \int \frac{1}{\sqrt{a+b x^4}} \, dx}{2 b}\\ &=-\frac{x \left (a e+a f x-b c x^2-b d x^3\right )}{2 a b \sqrt{a+b x^4}}-\frac{d \sqrt{a+b x^4}}{2 a b}-\frac{c x \sqrt{a+b x^4}}{2 a \sqrt{b} \left (\sqrt{a}+\sqrt{b} x^2\right )}+\frac{c \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 a^{3/4} b^{3/4} \sqrt{a+b x^4}}-\frac{\left (\sqrt{b} c-\sqrt{a} e\right ) \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{4 a^{3/4} b^{5/4} \sqrt{a+b x^4}}+\frac{f \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x^2}} \, dx,x,x^2\right )}{2 b}\\ &=-\frac{x \left (a e+a f x-b c x^2-b d x^3\right )}{2 a b \sqrt{a+b x^4}}-\frac{d \sqrt{a+b x^4}}{2 a b}-\frac{c x \sqrt{a+b x^4}}{2 a \sqrt{b} \left (\sqrt{a}+\sqrt{b} x^2\right )}+\frac{c \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 a^{3/4} b^{3/4} \sqrt{a+b x^4}}-\frac{\left (\sqrt{b} c-\sqrt{a} e\right ) \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{4 a^{3/4} b^{5/4} \sqrt{a+b x^4}}+\frac{f \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{x^2}{\sqrt{a+b x^4}}\right )}{2 b}\\ &=-\frac{x \left (a e+a f x-b c x^2-b d x^3\right )}{2 a b \sqrt{a+b x^4}}-\frac{d \sqrt{a+b x^4}}{2 a b}-\frac{c x \sqrt{a+b x^4}}{2 a \sqrt{b} \left (\sqrt{a}+\sqrt{b} x^2\right )}+\frac{f \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )}{2 b^{3/2}}+\frac{c \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 a^{3/4} b^{3/4} \sqrt{a+b x^4}}-\frac{\left (\sqrt{b} c-\sqrt{a} e\right ) \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{4 a^{3/4} b^{5/4} \sqrt{a+b x^4}}\\ \end{align*}

Mathematica [C]  time = 0.196435, size = 165, normalized size = 0.5 \[ \frac{3 a^{3/2} f \sqrt{\frac{b x^4}{a}+1} \sinh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )+2 b^{3/2} c x^3 \sqrt{\frac{b x^4}{a}+1} \, _2F_1\left (\frac{3}{4},\frac{3}{2};\frac{7}{4};-\frac{b x^4}{a}\right )-3 a \sqrt{b} (d+x (e+f x))+3 a \sqrt{b} e x \sqrt{\frac{b x^4}{a}+1} \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};-\frac{b x^4}{a}\right )}{6 a b^{3/2} \sqrt{a+b x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^2*(c + d*x + e*x^2 + f*x^3))/(a + b*x^4)^(3/2),x]

[Out]

(-3*a*Sqrt[b]*(d + x*(e + f*x)) + 3*a^(3/2)*f*Sqrt[1 + (b*x^4)/a]*ArcSinh[(Sqrt[b]*x^2)/Sqrt[a]] + 3*a*Sqrt[b]
*e*x*Sqrt[1 + (b*x^4)/a]*Hypergeometric2F1[1/4, 1/2, 5/4, -((b*x^4)/a)] + 2*b^(3/2)*c*x^3*Sqrt[1 + (b*x^4)/a]*
Hypergeometric2F1[3/4, 3/2, 7/4, -((b*x^4)/a)])/(6*a*b^(3/2)*Sqrt[a + b*x^4])

________________________________________________________________________________________

Maple [C]  time = 0.009, size = 331, normalized size = 1. \begin{align*} -{\frac{f{x}^{2}}{2\,b}{\frac{1}{\sqrt{b{x}^{4}+a}}}}+{\frac{f}{2}\ln \left ({x}^{2}\sqrt{b}+\sqrt{b{x}^{4}+a} \right ){b}^{-{\frac{3}{2}}}}-{\frac{ex}{2\,b}{\frac{1}{\sqrt{ \left ({x}^{4}+{\frac{a}{b}} \right ) b}}}}+{\frac{e}{2\,b}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}-{\frac{d}{2\,b}{\frac{1}{\sqrt{b{x}^{4}+a}}}}+{\frac{c{x}^{3}}{2\,a}{\frac{1}{\sqrt{ \left ({x}^{4}+{\frac{a}{b}} \right ) b}}}}-{{\frac{i}{2}}c\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{a}}}{\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}{\frac{1}{\sqrt{b}}}}+{{\frac{i}{2}}c\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticE} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{a}}}{\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}{\frac{1}{\sqrt{b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(3/2),x)

[Out]

-1/2*f*x^2/b/(b*x^4+a)^(1/2)+1/2*f/b^(3/2)*ln(x^2*b^(1/2)+(b*x^4+a)^(1/2))-1/2*e/b*x/((x^4+1/b*a)*b)^(1/2)+1/2
*e/b/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)
*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-1/2*d/b/(b*x^4+a)^(1/2)+1/2*c*x^3/a/((x^4+1/b*a)*b)^(1/2)-1/2*I*c/a^
(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2
)/b^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)+1/2*I*c/a^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1
/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)/b^(1/2)*EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2),I
)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (f x^{3} + e x^{2} + d x + c\right )} x^{2}}{{\left (b x^{4} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(3/2),x, algorithm="maxima")

[Out]

integrate((f*x^3 + e*x^2 + d*x + c)*x^2/(b*x^4 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (f x^{5} + e x^{4} + d x^{3} + c x^{2}\right )} \sqrt{b x^{4} + a}}{b^{2} x^{8} + 2 \, a b x^{4} + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(3/2),x, algorithm="fricas")

[Out]

integral((f*x^5 + e*x^4 + d*x^3 + c*x^2)*sqrt(b*x^4 + a)/(b^2*x^8 + 2*a*b*x^4 + a^2), x)

________________________________________________________________________________________

Sympy [A]  time = 15.565, size = 156, normalized size = 0.47 \begin{align*} d \left (\begin{cases} - \frac{1}{2 b \sqrt{a + b x^{4}}} & \text{for}\: b \neq 0 \\\frac{x^{4}}{4 a^{\frac{3}{2}}} & \text{otherwise} \end{cases}\right ) + f \left (\frac{\operatorname{asinh}{\left (\frac{\sqrt{b} x^{2}}{\sqrt{a}} \right )}}{2 b^{\frac{3}{2}}} - \frac{x^{2}}{2 \sqrt{a} b \sqrt{1 + \frac{b x^{4}}{a}}}\right ) + \frac{c x^{3} \Gamma \left (\frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{3}{4}, \frac{3}{2} \\ \frac{7}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac{3}{2}} \Gamma \left (\frac{7}{4}\right )} + \frac{e x^{5} \Gamma \left (\frac{5}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{5}{4}, \frac{3}{2} \\ \frac{9}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac{3}{2}} \Gamma \left (\frac{9}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(f*x**3+e*x**2+d*x+c)/(b*x**4+a)**(3/2),x)

[Out]

d*Piecewise((-1/(2*b*sqrt(a + b*x**4)), Ne(b, 0)), (x**4/(4*a**(3/2)), True)) + f*(asinh(sqrt(b)*x**2/sqrt(a))
/(2*b**(3/2)) - x**2/(2*sqrt(a)*b*sqrt(1 + b*x**4/a))) + c*x**3*gamma(3/4)*hyper((3/4, 3/2), (7/4,), b*x**4*ex
p_polar(I*pi)/a)/(4*a**(3/2)*gamma(7/4)) + e*x**5*gamma(5/4)*hyper((5/4, 3/2), (9/4,), b*x**4*exp_polar(I*pi)/
a)/(4*a**(3/2)*gamma(9/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (f x^{3} + e x^{2} + d x + c\right )} x^{2}}{{\left (b x^{4} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(3/2),x, algorithm="giac")

[Out]

integrate((f*x^3 + e*x^2 + d*x + c)*x^2/(b*x^4 + a)^(3/2), x)